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what quantities or attributes of a charge distribution or 
wave function make up the basic building blocks of a 
molecular system? The results presented here suggest 

The application of semiempirical 7r-electron molec­
ular orbital calculations to the study of chemical 

and spectroscopic properties of unsaturated hydrocar­
bons has been extensive and in general successful. The 
method of calculation used commonly is the semiem­
pirical scheme of Pariser, Parr, and Pople, which is an 
SCF-LCAO procedure based on the independent-par­
ticle model, grossly simplified by the assumption of S-II 
separability and the approximation of "zero differential 
overlap" between atomic orbitals on different centers.2 

The effect of these rather severe approximations is hope­
fully compensated somewhat by the introduction of 
semiempirical parameters into the calculation. Com­
putations following the PPP method result in 7r-electron 
molecular wave functions, describing many important 
phenomena not accommodated by the simpler Hiickel 
theory, such as separations between excited states of 
different multiplicity, excitation energies for electronic 
transitions giving rise to a and /3 bands in the absorption 
spectra of aromatic hydrocarbons, and positive as well 
as negative spin densities in free radicals and ions. Al­
though computations using the PPP method are in 
principle no more difficult than Hiickel calculations, the 
choice of suitable parameters for PPP calculations is 
more arduous, especially if hetero systems are to be 
treated. 

Often, when x-electron calculations are performed for 
a limited group of similar molecules, a parametrization 
is effected such as to give good agreement between com­
puted and experimental data for some molecules in the 
group considered. Proceeding in this manner results 
in a certain loss of objectivity, such as is commonly en-

(1) Research supported in part by the National Science Foundation. 
(2) (a) J. A. Pople, Proc. Phys. Soc, London, Ser. A, 68, 81 (1955); 

(b) R. Pariser and R. G. Parr, J. Chem. Phys., 21, 466, 767 (1953); 
(c) for additional references, see general reviews, e.g., L. Salem, "The 
Molecular Orbital Theory of Conjugated Systems," W. A. Benjamin, 
New York, N. Y., 1966; K. Jug, Theor. Chim. Acta, 14, 91 (1969). 

that the molecular fragments as defined by planes 
through the nuclei may be the basic units for the under­
standing of additivity. 

countered in Hiickel theory. In addition, it is more 
difficult to judge the relative reliability of calculations 
from different sources, when different approximations 
have been made in the selection of the basic parameters. 
If the PPP theory is general enough that it allows cor­
relation of computed results with experimental data 
over a wide variety of unsaturated compounds, there 
must be at least one consistent choice of parameters 
which will yield a general and wide-reaching correlation. 
It is felt that there exists a need for such a unified para­
metrization scheme which is generally applicable, 
without additional modifications, to all types of atoms 
routinely encountered in different 7r-electron systems. 

In order to deal with this problem we propose herein 
a generalized parameter scheme for PPP type calcula­
tions and detail its application to 7r-electron systems 
containing carbon, nitrogen, oxygen, and fluorine. 
Owing to the empirical nature of 7r-electron theory, it 
was felt that a direct theoretical parameter choice was 
not feasible, but the validity of an empirical parameter 
scheme, though derived with some theoretical reasoning, 
had to be demonstrated by showing its capability to 
predict or correlate observables. Therefore in section 
3 a number of representative calculations of electronic 
energies and proton isotopic hyperfine coupling con­
stants for different types of unsaturated systems are pre­
sented to substantiate the parameter scheme proposed 
in section 2. To clarify our notation and to avoid con­
fusion, section 1 allows for a brief review of the 7r-elec-
tron formalism as it is used here. 

1. Semiempirical 7r-Electron Theory 

In the 7r-electron approximation the S part of the 
total electronic wave function of a molecule is assumed 
to be invariant to changes in the 7r-electron distribution 
and therefore considered as constant and disregarded. 
A molecular wave function, \T/S, of a stationary state, de-
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scribing the 7r-electron cloud only, is then written in 
general as a sum of configurational functions, <£„. The 
configurational functions are Slater determinants con­
structed from molecular orbitals \f>t. These MO's are 
given as linear combinations of basis functions <pM as 

ti = ^nVnC1Ii (1) 

where the cjs are linear expansion coefficients. As a 
basis set ip„ atomic 2p7r orbitals are chosen, centered 
one on each atom which is participating in the w struc­
ture of the system. 

(a) Closed-Shell Ground State. The 7r-electron 
molecular wave function for a closed-shell ground state 
of a molecule with n(n — even) w electrons is written as a 
single Slater determinant, constructed from m = n/2 
doubly occupied spatial orbitals 

^o = *o = 

4 = det{ HDU.2). ..UV ~ WW- • -Mn)] (2) 

where barred orbitals are j3 spin, unbarred, a spin. ^ 0 

is an eigenfunction of S2 and S2 with the eigenvalues 0, 
representing a singlet state. 

The i/'j's in eq 2 are determined by the eigenvectors of 
the Fock equation 

Fc = SCE (3) 

where E is diagonal. 
In the zero differential overlap approximation of 

Pariser, Parr, and Pople we have <p,<pvdtT = 0 unless 
V = H. Thus S is a unit matrix, and the matrix elements 
of F are given by 

F11, = H111, - (1/2)pM„7M„ + h^Yj-P-<n^, (4) 

where 

7M, = ff^(l)<pX2)(l/ru)ipll(l)<pX2)dTldT2 (5) 

H11, = -I,(V,n) - E Z „ 7 , , (6) 

and 
m 

Py.v == *• 2-jC^iCvi \ I) 
i 

The 7MV's are one- and two-center Coulomb repulsion 
integrals, I11(V,n) is the nth ionization potential of atom 
fj, in valence state V, Z^ is the core charge of atom a 
(equal to the number of electrons contributed to the 
7r-electron system), and p„ represents an element of 
the charge density-bond order matrix P. H11, (=fij 
for ju ^ v is known as a core resonance integral and 
enters as a parameter, as do l,(V,n) and J111,. 

(b) Open-Shell Ground States. For open-shell sys­
tems of ir-electron free radicals and radical anions 
and cations, we choose the spin-unrestricted Hartree-
Fock description, because we would like to retain the 
simplicity of a single determinantal wave function, but 
at the same time be able to describe negative spin 
densities, central in the description of electron spin 
resonance spectroscopy. 

An unrestricted molecular wave function for p a 
electrons and q /3 electrons (putting arbitrarily p > q) 
has the form 

¥„» = ( l / V « ! ) d e t { ^ ( W 2 * ( 2 ) . . . 

+XPWP+S(P + I)- • .+,+AP + ?)} (8) 

where the molecular orbitals comprising the elements 
of the determinant form two different orthonormal sets 

^aE„ = <vW *<TM = w j (9) 

determined by the solutions of 

F"c" = Scaea, F V = S c V (10) 

with 

FJ = H11, - P11Sy11, + 5jZ,(p™a + P9S)TY11. (H) 

and 
aocc 

P^" = Y1CJcn* (12) 
i 

The matrix elements F" are obtained by interchanging 
the superscripts a with the superscripts /3 in eq 11 and 
12. The IT electronic energy of the system is 

Eou = (11I)Z11JLPJ(H11, + Fj) + 

Pj(H,, +FJ)] (13) 

The wave function ^ 0 " is an eigenfunction of S2 but 
not of S2 and contains, in addition to the state of the 
multiplicity desired, contamination from spin com­
ponents of higher multiplicity. However, the extent 
of contamination from higher multiplets is generally 
not large and ^ 0 " may usually be considered a reason­
able approximation to the state desired. By an­
nihilating contaminating states of higher multiplicity 
one can obtain a ground-state function from ^0", which 
is an eigenfunction of S2. Such an annihilation will 
in general change the energy and charge distribution 
little; however, it may have a marked effect on spin 
densities (see Results). 

(c) Excited States. A simple formulation of the 
molecular wave function for an excited singlet or triplet 
state, arising from a single excitation of a closed-shell 
ground state, may be given as the sum or difference of 
two determinantal functions. 

(1/V50[det{fc(l)fr(2). .-U2i - DU2i)- . .fc(«)} ± 

detf ^(1)^(2) . • -U2i - W*(2/). . .&,(«)}] (14) 

Equation 14 describes a spin-proper configuration 
arising from a single excitation of an electron out of the 
orbital \j/{, occupied in the ground state, into a virtual 
(unoccupied) orbital \j/k. The positive sign refers to a 
singlet and the negative sign to a triplet configuration. 
A single configuration represented by eq 14 will be in 
general a poor approximation to an excited state. 
A better, and frequently a sufficiently good approxi­
mation to an excited state, is obtained by writing the 
excited-state wave function as a linear combination 
of many such spin-proper configurations of a given 
multiplicity 

and determining the linear expansion coefficients 
Anv by the variational method (configuration-inter­
action calculation). In this investigation the sum­
mation in eq 15 will be limited to singly excited con­
figurations from the restricted Hartree-Fock ground-
state function of eq 2, and the parametrization will be 
effected accordingly. The energies of the electronic 
excited states and the linear expansion coefficients 
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AnP are the eigenvalues and eigenvectors respectively 
of the matrix H of the total 7r-electron operator 3C" 
of the system, having the elements (<t>m|3Cr\$n). 
Since the orbitals from which the spin-proper con­
figurations are constructed are Hartree-Fock orbitals, 
the interaction elements between ground state and 
singly excited configurations will vanish, and the H 
matrix elements may be written for singlets as 

(1S7nM
 1Sn) = (1S1-^M 1Si^) = M*»Eo + 

S*,e* - 5„e, - (jk\H) + 2(jk\li) (16) 

and for triplets as 

( 3 S ^ I 3 S 1 1 ) = (3SwJJC'13S^;) = 5tf8*i£o + 

hi** ~ 5«e4 - (Mil) (17) 

where S0 is the Kronecker delta. Due to the "zero 
differential overlap" approximation, we have 

(ij\kl) = ffUVUW/rriMWffldndTi 

~ Y1C„iC„kc,iC,Ci^ (18) 

By subtracting the ground-state energy, E0, from the 
diagonal matrix elements, the eigenvalues obtained will 
be the excitation energies. 

Analogously excited doublet and quartet states could 
be constructed from the unrestricted Hartree-Fock 
functions of ions and radicals, eq 8; however, this 
possibility is not considered in this work. 

2. Parametrization 

From the preceding review of the formalism of semi-
empirical Tr-electron molecular orbital theory, it is 
seen that the same basic parameters enter into each 
type of calculation considered, namely the valence-
state ionization potentials I11, the Coulomb repulsion 
integrals YM„, and the core resonance integrals |3„„. 
We proceed now to a detailed discussion and specifi­
cation of the particular parameter choice proposed for 
the atoms carbon, nitrogen, oxygen, and fluorine. 

(a) Valence-State Ionization Potentials and One-Center 
Coulomb Repulsion Integrals. The valence-state ion­
ization potentials and the one-center Coulomb repulsion 
integrals are interrelated through the elegant argument 
due to Pariser,3 who pointed out that the energetics of 
a charge-transfer disproportionation of two identical 
neutral atoms into an ion pair require approximately 

7MM = / , - 4 . (19) 

where I11 and A11 are the proper ionization potential and 
electron affinity of atom p. The validity of Pariser's 
argument has been questioned frequently; it has been 
criticized particularly because the rearrangement in 
the electronic core (analogous to the S core in TT-
electron theory) of the atoms is not considered. Ne­
glect of core rearrangement, however, is consistent with 
the entire framework of Tr-electron theory. Equation 
19 is attractive by its simplicity and especially through 
the fact that with it good results can be obtained. To 
our knowledge there is in semiempirical ir theory no 
procedure of obtaining the one-center Coulomb in­
tegral, which yields results significantly better; there-

(3) R. Pariser, J. Chem. Phys., 21, 568 (1953). 

fore, eq 19 has been adopted for the determination of 
the one-center Coulomb repulsion integrals. 

The determination of valence-state ionization poten­
tials and electron affinities is accomplished by com­
bining the proper valence-state promotional energies 
with the corresponding ground-state ionization poten­
tials and electron affinities, respectively. For example, 
the valence-state ionization potential and electron 
affinity for carbon in its (tr tr tr TT) valence state is given 
by 

/c(tr tr tr TT, 1) = / c + Pc+Or tr tr) - P0
0Or tr tr TT) 

^ c ( t r tr tr TT, 1) = 

Ac + Pc0Or tr tr TT) - Pc -Or tr tr TT2) 

where PcO) is the promotion energy to valence state v. 
For an atom contributing two electrons to the Tr-
electron system of a molecule, it is necessary to have the 
second valence-state ionization potential and corre­
sponding electron affinity, i.e., the first ionization 
potential. As an example for a pyrrole nitrogen, with 
a valence state tr tr tr TT2, it is 

/N( t r t r t r7r 2 , 2) = / N
2 + 

PN
2+(tr tr tr) - PN

+(tr tr tr TT) 

^ N ( t r t r t r TT2, 2) = Z N
1 + 

PN+(tr tr tr TT) - PN°(tr tr tr TT2) 

Selection of the ground-state ionization potentials and 
electron affinities and calculations of the appropriate 
promotion energies has been considered in detail in an 
earlier publication,4 and the valence-state quantities 
employed herein are based on these results. 

It is in general not necessary to consider fine details 
in the hybridization of the underlying core of the atoms 
considered, since such changes affect the p7r-electron 
ionization potential and electron affinity only little. 
As an example, / c 0 r tr tr TT, 1) = 11.16 eV and A0-
(tr tr tr TT, 1) = 0.03 eV, while for acetylene-type 
carbon the values would be /c(di di TT TT, 1) = 11.19 
eV and Ac(di di TT TT, 1) = 0.10 eV. It is therefore 
sufficient to use general p Tr-electron ionization poten­
tials and electron affinities. In Table I the required 

Table I. Valence-State Ionization Potentials, 
Electron Affinities, and One-Center Coulomb Integrals Used" 

Atom 

C 
N(I) 
N(II) 
O(I) 
0(11) 
F(II) 

• See ref 6, 

Valence-state 
electronic 

configuration 

tr tr tr T 
t r ' t r t r TT 
tr tr tr ir2 

tr2 tr2 tr TT 
tr2 tr tr ir2 

Sp2P2P2 

Valence-
state 

ionization 
potential, 

eV 

11.16 
14.12 
28.72 
17.70 
34.12 
40.70 

Valence-
state 

electron 
affinity, 

eV 

0.03 
1.78 

11.96 
2.47 

15.30 
18.52 

One-
center 

Coulomb 
integral, 

eV 

11.13 
12.34 
16.76 
15.23 
18.82 
22.18 

pTr-electron ionization potentials and electron affinities 
are listed together with the corresponding one-center 
Coulomb repulsion integrals, evaluated from eq 19, for 
the atoms considered in this investigation. The values 

(4) J. Hinze and H. H. Jaffe, J. Amer. Chem. Soc, 84, 540 (1962); 
J. Hinze, Ph.D. Dissertation, University of Cincinnati, 1962. 
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R(au) 

F igu re 1. Dependence of » on rM„ as compu ted for 2pir orbi tals , 
a n d a s given by different app rox ima te formulas . 

given correspond to an underlying trigonally hy­
bridized core, as it is most commonly encountered. 

(b) Two-Center Coulomb Repulsion Integrals. The 
one-center Coulomb repulsion integrals, when deter­
mined semiempirically from eq 19, are lower than the 
corresponding theoretical values, computed from Slater-
type orbitals using Slater-Zehner exponents or from 
atomic Hartree-Fock orbitals, and thus correspond to 
somewhat more diffuse orbitals. The two-center 
Coulomb integrals must be determined with recognition 
of their proper limiting values; i.e., they should join 
smoothly the purely electrostatic value V - * for large 
distances r„„ and also go to y^ at r„, = 0 in the homo-
nuclear case. A general formula for 7M„ may be ob­
tained by treating the problem purely theoretically and 
evaluating the Coulomb integral using Slater-type 
functions with an exponent that would give the em­
pirical y^ for the one-center case. Such a procedure 
would complicate x-electron calculations considerably, 
and not necessarily yield better results than the al­
ternative method of treating the integrals empirically. 
This can be done by choosing a flexible function with 
the required limiting behavior and implementing it 
from experience. We have chosen the latter method, 
and our suggested general formula for yM, in atomic 
units is 

7 , r = l/[a e x p ( - v 7 2 a 2 ) + V l (20) 

where 

a = 2/(7MM + 7») (21) 

with the 7's in hartrees and r in bohrs. (Atomic units 
are chosen here to avoid the appearance of conversion 
factors in the formulas.) 

This expression is similar to a suggested formula by 
Mataga and Nishimoto,6 and has been inspired by it. 
An equation of similar form has been suggested by 
Knowlton and Carper.6 The exponential factor in­
troduced into the denominator was found necessary 
to dampen the influence of a at intermediate values 
of /•„„, because Mataga-type formulas, without the 

(5) K. Nishimoto and N . Mataga, Z. Phys. Chem. (Frankfurt am 
Main), 12, 335 (1957); 13, 140 (1957). 

(6) P. Knowlton and W. R. Carper, MoI. Phys., 11, 213 (1966). 

exponential factor, result in the prediction of triplet 
states which are in general more than 1 eV too low. 
The reason for this is apparently that Mataga-type 
7M/s show initially a too rapid decrease of 7„„ with 
r^, giving too large differences between one-center 
Coulomb integrals and nearest-neighbor Coulomb in­
tegrals. Another formula for %,„ tested in this work 
has been 

TV = l / V ^ T ^ 2 (22) 

as suggested by Ohno.7 However, results obtained 
with such 7M„'s were completely unacceptable. In 
Figure 1 the dependence of different y„v formulas on 
r„, is illustrated for C(27r)-C(2p7r) Coulomb repulsion. 

(c) Core Resonance Integrals. A semitheoretical 
method of estimating ^ , has been proposed by Ohno.7 

Using Lowdin orbitals and assuming that the major 
contribution to /3M„ comes from the region near the 
midpoint of internuclear separation, he derives 

fa = (1/2XZ11 + ZJSJv11, - (2QrJ) (23) 

where C is a disposable parameter. We have chosen to 
implement eq 23 in its present form into the overall 
parametrization scheme proposed herein, choosing the 
basic functions for the evaluation of S11, in a manner 
consistent with the semiempirical 7„„. This is ac­
complished by evaluating S11, over Slater orbitals, 
using the theoretical value of the orbital exponents 
corresponding to the semiempirical value for the one-
center Coulomb repulsion integral; i.e., evaluating the 
one-center Coulomb repulsion integral y^ from a 2px 
orbital, which is represented by a single 2p Slater-
type basis function with exponent f„, gives the relation 

f„ = (1280/501)7«. (24) 

which is used to obtain the f /s required for the de­
termination of the overlap integrals S^. This pro­
cedure leads to relatively large values for the overlap 
integrals, but has the advantage of leaving the param­
eter scheme proposed internally consistent, and based 
entirely on the atomic energy data. That S11, used in 
eq 23 may be too large is remedied by the parameter C, 
which is left unspecified to this point. This param­
eter has been chosen empirically such as to give the 
best overall fit to the electronic excitation energies in a 
small set of selected compounds, namely ethylene, 
benzene, and the monocyclic azines. The best value 
found is C = 0.545, and this value has been used in all 
following calculations performed, to substantiate the 
parameter scheme proposed herein. 

3. Results of Sample Calculations 
As pointed out in the introduction, the authors feel 

that a rigorous theoretical justification of a parameter 
scheme in the Pariser-Parr-Pople method cannot be 
achieved, owing to the many approximations in this 
semiempirical MO procedure. Numerical experimen­
tation is therefore the only method to test the merits 
of the parametrization scheme proposed in section 
2. Any parameter scheme is useful only if with it 
several experimental observables can be calculated 
reliably for a large class of molecules. It is, however, 
asking too much to expect a particular scheme to over­
come the limitations inherent in the Pariser-Parr-Pople 

(7) K. Ohno, Theor. CMm. Acta, 2, 219 (1964). 
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method. The method is based on the independent-
particle model and is therefore incapable of yielding 
effects which depend critically on electron correlation. 
Fortunately, it appears possible to compensate some 
of this shortcoming by an appropriate parameter 
choice. However, if parameters are chosen to com­
pensate for one particular error, one should not expect 
the same parameters to compensate other correlation 
errors. To be more specific, let us discuss correlation 
errors in the description of electron excitation and ion­
ization. 

A particular singly excited configuration of a closed-
shell molecule gives rise to a singlet and a triplet state. 
We ask what the electron correlation error is, if we 
calculate term values, i.e. 

AE = E* - E" 

Identifying the correlation energy as e (a negative 
quantity), we obtain 

Ae = e* - e0 

If the transition energy is calculated within the frame­
work of the independent-particle model, we should get 
A £ H F which in general will be smaller than AE, since 
e0 is in general smaller than e* (e0 and e* are negative 
energy quantities), and 

AE = A £ H F + Ae 

If we effect the parametrization such that we obtain 
AE{1\ for singlet states, directly, in the frame of the 
independent-particle model, then we should expect to 
obtain values for A£C3) for triplet states, which are too 
low, because we calculate approximately 

A£(3) = A £ I 3 ) H F + Ae<» 

the corrections Ae(1) resulting from our parameter 
choice; however, Ae(1) is in general smaller than Ae(3), 
since the Fermi hole in the triplet state results in e*u) < 
€*i3) (y s a r e negative quantities). 

The parametrization scheme suggested in this paper 
is adjusted so as to yield good correlation between 
experimental and computed values for singlet-singlet 
transition energies and for ground-state properties, 
i.e., proton isotopic hyperfine coupling constants. It 
must be expected therefore that singlet-triplet ex­
citations will be calculated consistently too low. Such 
a consistent discrepancy has been observed in all cases 
where experimental singlet-triplet transition energies 
are known. 

It can be concluded from an argument quite anal­
ogous to the one presented above that ionization 
potentials calculated from orbital energies, following 
Koopmans' theorem, should be too large, if the orbital 
energies are obtained with parameters chosen for 
singlet-singlet transitions. This is also consistent with 
the results obtained in this work. Thus the parameter 
scheme presented here will reliably yield only ground-
state properties and singlet-singlet transition energies. 
We believe, because of the arguments presented above, 
that such limitations should apply to any general 
parameter scheme for the Pariser-Parr-Pople method. 
The arguments presented above apply only if, as is done 
here, the ground state is described by a single, spin-
restricted HF function, and the excited states are ex­
pressed as combinations of Slater determinants, singly 

2 5 - ' # 5 ,F 
-Q / 
O / 3_ y 

A 
o l H - I 1 1 1 I 

2 3 4 5 6 7 (ev) 
uv transition energy calculated 

Figure 2. Observed uv absorption bands vs. computed singlet-
term energies for molecules given in Table II. 

excited with respect to the ground state. If doubly 
and higher excited configurations are used in the ex­
pansion of the total wave function, these shortcomings 
of the conventional Pariser-Parr-Pople method can 
be overcome. Work along these lines is in progress. 

Results for Singlet-Singlet Excitations. Singlet-
singlet excitation energies were calculated for organic 
7r-electron systems containing the atoms C, N, O, and 
F. The results are given in Figure 2 and Table II. 
All systems were assumed to be planar and, if known, 
the ground-state bond distances and angles were used; 
otherwise, idealized structures were assumed with 
standard internuclear distances. It was found that the 
results did not depend critically on these assumed 
geometries. The computed transition energies should 
correspond to the energies of the absorption maxima, 
since these Franck-Condon maxima in general corre­
spond to excitations from the zeroth vibrational state, 
which corresponds most closely to the ground-state 
geometry assumed in our calculations. Unfortunately, 
most of the observed absorption maxima are rather 
broad; therefore, we have compared an observed 
absorption range with the computed transition energies. 
This we believe is more meaningful than comparing 
the exact observed absorption maxima. Frequently 
weak absorptions, which are symmetry or overlap 
forbidden, do not show up in the system as absorption 
maxima. If such absorptions appeared as shoulders 
of stronger peaks, we have included them in Table II 
together with the corresponding computed excitation 
energies. If, however, symmetry- or overlap-forbidden 
excitations resulted in the computation of energy values 
where neighboring strong lines completely obscured 
the appearance of a weak absorption, then such com­
puted excitations are left out in Table II, since no 
meaningful comparison would be possible. It should 
be kept in mind that the purpose of this presentation is 
to compare computed and observed spectra to justify 
a parameter scheme, and we do not even attempt to 
interpret in detail any one particular uv spectrum of a 
compound. Only in the latter case would it be neces­
sary to also report computed weak transition energies 
which clearly are obscured in the observed spectrum. 
It is seen from Table II and from the correlation dia­
gram, Figure 2, that the computed transition energies 
correlate well with the observed absorption maxima 
ranges. 
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Type 

Hydrocarbons 
Alternant 

Nonalternant 

N + 

N 2 + 

O + 

O 2 + 

f2+ 

Mixed 

Compound 

?ra«s-Butadiene 
Styrene 
Naphthalene 
Phenanthrene 

Azulene 

Acenaphthylene 

Pyrazine 
Isoquinoline 

Acridine 

Aniline 

Pyrrole 
Indole 

o-Benzoquinone 
p-Benzoquinone 
Benzaldehyde 

Phenol 
Hydroquinone 
Furan 

Fluorobenzene 

a-Fluoro-
naphthalene 

/3-Fluoro-
naphthalene 

/?-Aminopyridine 
Benzoic acid 

Nitrobenzene 

/j-Nitroaniline 

p-Nitrophenole 

Ref 

a 
b 
b 
b 

b,d 

c, e 

b 

f 

C 

b,c 

b,g 
b 

h 
c, h 
b 

b,c 
b,i 
bj 

b 

k 

k 

I 
bj 

b 

m 

m 

Excitation 1 
Calcd 

5.51 
4.39 
3.97 
3.71 

2.03, 
2.13 

2.90 

3.77 

3.38 

4.41 

5.12 
2.38 

2.79 
2.71 

4.61 
4.58 
4.71 

4.62 

3.95 

3.95 

4.36 
3.84 

4.49, 
4.56 

4.37, 
4.53 

4.48, 
4.55 

Exptl 

5.80-6.10 
4.30-4.50 
3.90-4.15 
3.55-3.85 

2.00-2.20 

2.80-3.00 

3.95-4.05 
3.85-4.00 

3.40-3.50 

4.25-4.40 

5.10-5.20 

2.40-2.55 
2.70-2.80 
3.65-3.85 

4.50-4.65 
4.15-4.30 
4.40-4.60 

4.65-4.80 

3.90-4.00 

3.90-4.05 

4.35-4.50 

4.65-4.85 

4.10-4.30 

3.85-4.15 

Excitation 2 
Calcd Exptl 

6.64 6.60-6.70 
4.82 5.00-5.10 
4.36 4.40-4.60 
4.21 4.15-4.30 

3.36 3.50-3.80 

3.77 3.65-3.75 

4.67 4.70-4.85 
4.31 4.50-4.80 

3.47 3.55-3.70 

5.30 5.20-5.35 

5.47 5.35-5.60 
3.97 4.25-4.35 

3.87 3.60-3.90 
4.07 4.25-4.40 
4.34 4.30-4.50 

5.64 5.50-5.75 
5.60 5.45-5.60 
5.67 5.60-5.80 

5.67 5.80-5.90 

4.34 4.30-4.50 

4.34 4.30-4.50 

5.10 4.95-5.15 
4.42 4.40-4.60 

5.26 5.70-5.85 

5.76 5.40-5.65 

5.19 5.25-5.60 

Excitation 3 
Calcd 

7.13 
5.83 
5.80 
5.14, 

5.16 
4.31 

3.81 

6.18 
5.22 

4.15, 
4.85 

6.22, 
6.23 

4.50 

5.22 
5.67 
4.97 

5.16 

6.01, 
6.20 

5.94, 
6.16 

Exptl 

7.05-7.15 
5.75-5.90 
5.60-5.70 
4.85-5.10 

4.35-4.60 

3.80-3.90 

6.15-6.25 
5.25-5.40 

6.20-6.35 

4.55-4.70 

5.00-5.30 
5.10-5.35 
4.90-5.15 

5.35-5.55 

6.10-6.30 

6.20-6.35 

Excitation 4 
Calcd 

6.08 
6.17 
5.56, 

5.71 
4.98 

4.87 

7.22 
5.61, 

5.66 
5.11, 

5.12 
5.15 

5.28 

5.94 

6.11, 
6.20 

Exptl 

5.95-6.30 
5.90-6.20 
5.70-6.00 

5.05-5.15 

4.50-4.80 

7.05-7.25 
5.60-5.80 

4.90-5.10 

5.55-5.80 

5.75-5.90 

6.15-6.30 

Excitation 5 
Calcd Exptl 

5.55 5.30-5.50 

<• L. C. Jones, Jr., and L. W. Taylor, Anal. Chem., 27, 228 (1955). b J. R. Piatt, "Systematics of Electronic Spectra of Conjugated Mole­
cules," Wiley, New York, N. Y., 1964. c R. A. Friedel and M. Orchin, "Ultraviolet Spectra of Aromatic Compounds," Wiley, New York, 
N. Y., 1951. d E. K. Jensen, E. Kovats, A. Eschenmoser, and E. Heilbomner, HeIv. Chim. Acta, 39, 1051 (1956). • A. Pullman, et al., J. 
Chim. Phys. Physicochim. Biol., 48, 359 (1951). ' R. Miiller and F. Dorr, Z. Elektrochem., 63, 1150 (1959). » S. Menezel, Z. Phys. Chem., 
125, 161 (1927). * L. Horner and H. Lang, Chem. Ber., 89, 2768 (1956). * J. C. Dearden and W. F Forbes, Can. J. Chem., 37, 1294 (1959). 
> "UV Atlas of Organic Compounds," Plenum Press, New York, N. Y., 1966. * T. Iredale and J. W. White, Trans. Faraday Soc., 56, 1719 
(1960). ' P. Grammaticakis, Bull. Soc. Chim. Fr., 480 (1959). m L. Lang, Ed., "Absorption Spectra in the Ultraviolet and Visible Region," 
Academic Press, New York, N. Y., 1965. 
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Table II. Computed and Experimental Uv-Excitation Energies (eV) 

It is clear that if a parameter scheme can be tailored 
so as to yield better results for a particular small class 
of compounds, the discrepancies for compounds outside 
this class would then surely be larger. In addition to 
the transition energies, we have also computed the 
transition moments, using the point-dipole approxi­
mation. The results obtained correlate rather well 
with the observed molar extinction coefficients. This 
permitted a less ambiguous assignment of computed 
and observed transition energies. Besides the results 
reported here, we computed the spectra of 40 more 
hydrocarbons and azines, and the results obtained 
agreed equally well with the observed spectra as did 
those reported here. We will report on these results 
in the future, with an attempt at detailed spectral 
assignments. 

Results for Proton Isotopic Hyperfine Coupling 
Constants. It is clear that within the PPP method the 
proton hyperfine coupling constant, which depends 
on the electron spin probability at specific protons, 
cannot be obtained directly. The protons are generally 
located in the molecular plane where the 7r-electron 
wave function, which is the part of the electronic wave 
function considered explicitly, has a nodal plane. It 
is expected, however, that the proton hyperfine coupling 
constants, aH, observed in esr spectra, correlate well 
with pc, the electron spin density in the -rr orbital of the 
carbon atom, to which the specific hydrogen atoms are 
bonded. This is generally known as the McConnell 
relation8 

CH = QPCT 

(8) H. M. McConnell, J. Chem. Phys., 24, 764 (1956). 
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Figure 4. Observed proton isotropic hyerpfine coupling constant 
vs. calculated 2pir orbital spin density (aa = after annihilation of 
quartet contamination). Dotted line is linear-least-squares cor­
relation line, constrained to origin. Key to Figure 3 applies also to 
Figure 4. 

which can be justified theoretically.9 Therefore, the 
calculated spin densities of the carbon atoms are corre­
lated with the observed proton isotopic hyperfine 
coupling constants of the corresponding hydrogen 
atoms (see Figures 3 and 4). 

Figure 3. Observed proton isotropic hyperfine coupling constant 
vs. calculated 2px orbital spin density (sd = single determinant). 
Dotted line is linear-least-squares correlation line, constrained to 
origin. Key: (1) allyl radical, 1 position;10 (2) allyl radical, 2 
position;10 (3) pentadienyl radical, 1 position;10 (4) pentadienyl 
radical, 2 position;10 (5) pentadienyl radical, 3 position;10 (6) 
benzyl radical, 2 position;11 (7) benzyl radical, 3 positon;11 (8) 
benzyl radical, 4 position;11 (9) benzyl radical, 7 position;11 (10) 
fra«s-butadiene radical anion, 1 position;12 (11) r/ww-butadiene 
radical anion, 2 position;12 (12) azulene radical anion, 1 position;12 

(13) azulene radical anion, 2 position;12 (14) azulene radical anion, 
4 position;12 (15) azulene.radical anion, 5 position;12 (16) azulene 
radical anion, 6 position;12 (17) diphenyl radical anion, 2 position;13 

(18) diphenyl radical anion, 3 position;13 (19) diphenyl radical 
anion, 4 position;13 (20) biphenylene radical anion, 1 position;14 

(21) biphenylene radical anion, 2 position; 14 (22) biphenylene 
radical cation, 1 position;16-16 (23) biphenylene radical cation, 2 
position;15'16 (24) anthracene radical anion, 1 position;17'18 (25) 
anthracene radical anion, 2 position,17'18 (26) anthracene radical 
anion, 9 position;1718 (27) anthracene radical cation, 1 position;17'18 

(28) anthracene radical cation, 2 position;17'18 (29) anthracene 
radical cation, 9 position;17'18 (30) perylene radical anion, 1 posi­
tion;17'18 (31) perylene radical anion, 2 position;17'18 (32) perylene 
radical anion, 3 position;17'18 (33) dibenzobiphenylene radical 
cation, 1 position;14 (34) dibenzobiphenylene radical cation, 5 
position;14 (35) m-dinitrobenzene, 2 position;19 (36) pyridazine 
radical anion, 3 position;20 (37) pyridazine radical anion, 4 posi­
tion;20 (38) j-tetrazine radical anion, 3 position;21 (39) m-dinitro-
benzene, 4 position;19 (40) 1,4-diazanaphthalene radical anion, 2 
position;22 (41) 1,4-diazanaphthalene radical anion, 5 position;22 

(42) 1,4-diazanaphthalene radical anion, 6 position;22 (43) phthal-
azine radical anion, 1 position;21 (44) phthalazine radical anion, 
5 position;21 (45) phthalazine radical anion, 6 position;21 (46) 
1,5-diazanaphthalene radical anion, 2 position,20 (47) 1,5-diaza-
naphthalene radical anion, 3 position;20 (48) 1,5-diazanaphthalene 
radical anion, 4 position;24 (49) phenazine radical anion, 1 posi­
tion;20 (50) phenazine radical anion, 2 position;20 (51) 1,4,5,8-
tetraazaanthracene radical anion, 2 position;22 (52) 1,4,5,8-tetra-
azaanthracene radical anion, 9 position;22 (53) dihydropyrazine 
radical cation, 2 position;23 (54) phenoxy radical, 2 position;24 

(55) phenoxy radical, 3 position;24 (56) phenoxy radical, 4 posi­
tion;24 (57) />-benzoquinone radical anion, 2 position;25'26 (58) 
o-benzoquinone radical anion, 3 position;25-27'28 (59) o-benzo-
quinone radical anion, 4 position;25.27'28 (60) 1,4-naphthoquinone 
radical anion, 2 position;25 (61) 1,4-naphthoquinone radical anion, 
5 position;25 (62) 1,4-naphthoquinone radical anion, 6 position;25 

(63) 9,10-anthraquinone radical anion, 1 position;25 (64) 9,10-
anthraquinone radical anion, 2 position;26 (65) 9,10-phenanthrene-
quinone radical anion, 1 position;28 (66) 9,10-phenanthrenequinone 
radical anion, 2 position;29 (67) 9,10-phenanthrenequinone radical 
anion, 3 position;29 (68) 9,10-phenanthrenequinone radical anion, 
4 position;29 (69) hydroquinone radical cation, 2 position;80 (70) 
nitrobenzene radical anion, 2 position;31 (71, 72) nitrobenzene 
radical anion, 4 position;31 (73) l-nitro-4-aminobenzene radical 
anion, 2 position;31 (74) l-nitro-4-aminobenzene radical anion, 3 
position;31 (75) l-nitro-4-fluorobenzene radical anion, 2 position;32 

(76) l-nitro-4-fluorobenzene radical anion, 3 position;32 (77) 
l-nitro-4-hydroxybenzene radical anion, 2 position;33 (78) 1-nitro-
4-hydroxybenzene radical anion, 3 position;33 (79) c/'-s-butadiene 
radical anion, 1 position;12 (80) cu-butadiene radical anion, 2 posi­
tion;12 (81) phenanthrene radical anion, 1 position;34 (84) phenan-
threne radical anion, 2 position;34 (83) phenanthrene radical anion, 
3 position;34 (84) phenanthrene radical anion, 4 position;3 4 (85) phen­
anthrene radical anion, 9 position;34 (86) pyrene radical anion, 1 
position;16 (87) pyrene radical anion, 3 position;16 (88) pyrene radi­
cal anion, 4 position;16 (89) perylene radical cation, 1 position;17'18 

(90) perylene radical cation, 2 position;17.18 (91) perylene radical 
cation, 3 position;17'18 (92) dibenzobiphenylene radical anion, 1 
position;14 (93) dibenzobiphenylene radical anion, 2 position;14 

(94) dibenzobiphenylene radical anion, 5 position;14 (95) pyrazine 
radical anion, 2 position;35 (96) naphthalene radical anion, 1 posi­
tion;13 (97) naphthalene radical anion, 2 position;13 (98) naphtha­
lene radical cation, 1 position;13 (99) naphthalene radical cation, 
2 position;13 (100) tetracene radical anion, 1 position;13 (101) 
tetracene radical anion, 2 position;13 (102) tetracene radical anion, 
5 position;13 (103) tetracene radical cation, 1 position;13 (104) 
tetracene radical cation, 2 position;J3 (105) tetracene radical cation, 
5 position.13 

(9) H. M. McConnell, J. Chem. Phys., 28, 1188 (1958). 
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It is well known that PPP calculations within the 
restricted SCF frame, i.e., each spatial orbital occupied 
with spin-a and spin-/3 electrons except on singly 
occupied orbitals, cannot yield negative spin densities. 
It is therefore necessary to resort to an unrestricted 
SCF formalism, as outlined above, if spin densities at 
the carbon atoms are to be computed in a more realistic 
manner. It is well known also that unrestricted SCF 
functions are not eigenfunctions of the S2 operator. 
Thus the wave functions which are obtained directly 
by solving eq 10 will in general not represent pure 
doublet states as they should for the radicals and posi­
tive and negative ions considered here. In principle, 
it is possible to project out the components of the wave 
function which corresponds to states of higher multi­
plicity. This, however, is rather arduous, and it is in 
general sufficient to annihilate the next higher multi­
plicity component, here a quartet. This is so because 
the higher spin components are in general only small 
contaminations of the wave functions, which in our case 
are in general of more than 98% doublet character. 
It should in general not be expected that the projected 
wave function or the function with the dominant con­
tamination, here the quartet, annihilated yield a more 
true representation of the electron or spin distribution. 
Because the orbitals of the projected function were 
obtained by solving eq 10, in which the electron inter­
action potential is obtained from the unprojected total 
wave function, the projected or annihilated functions 
are in general no longer self-consistent functions. In 
addition, the generation of wave functions which are 
eigenfunctions of S2 from the unrestricted SCF function 
is necessarily arbitrary. The mechanical procedures 
of projection or annihilation do not always yield func­
tions which give a potential in the SCF equations which 
is most closely related to the potential used when solving 
the SCF equations. Thus, the unrestricted SCF func-

• tions are afflicted with inadequacies if used directly or 
after projection or annihilation of the contaminating 
spin components. Fortunately, these inadequacies 
are in general not serious, since the contribution of high-
spin components to the unrestricted SCF functions is 
rather small. Inspection and statistical evaluation of 
the correlations in Figures 3 and 4 show that the corre­
lation of experimental and computed results before 

and after annihilation of quartet states is equally good. 
For the spin-density proton hyperfine coupling constant 
correlation derived from a single determinantal function 
(Figure 3)10-35 the slope is Q = -17.09, and the 
standard error is 1.05 G, while for the function after 
quartet annihilation (Figure 4)10-36 the slope is Q = 
— 23.66, with the standard error 0.84 G. Thus we 
conclude that our parameter scheme is adequate to 
reliably yield proton hyperfine coupling constants 
within the unrestricted SCF frame of the PPP ap­
proximation and the McConnell relation. It may be 
concluded further that a projection or annihilation of 
contaminating high multiplicity in the wave function is 
unnecessary labor if esr spectral data are to be corre­
lated or predicted. 
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